找回密码
 加入地震坛
搜索
热搜: 活动 交友 discuz
楼主: 匿名

浅谈太阳磁暴和磁贫(作者:遠长江)2020、9、30日

[复制链接]
匿名  发表于 2020-10-26 09:32
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 09:32
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 09:33
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 09:33
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 09:33
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 09:33
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 09:33
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 09:34
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 09:34
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 09:34
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 09:34
(续上文):磁力仪可以记录地震,但仔细观察却没有发现真正的同震电磁信号。当地震发生时,电磁信号就应该突然爆发,那么世界各地的磁力仪都应该能夠在第一个地震波之前检测信号。但事实并非如此。
匿名  发表于 2020-10-26 10:21
(续上文):作者(遠长江)在此发表不同见解,根据摩擦生电的科学原理,地壳岩石圈大小板块突然发生岩层断裂(指应力达到峰值时),断层两盘岩石发生剧烈错动、极高强度摩擦,必然产生摩擦生电,那么同震电磁信号必然会同时出现,这是无法否定的事实。那为什么磁力仪记录没有收到同震电磁信号呢?作者(遠长江)分析,可能存在两个原因:其一是现代磁力仪仪器还存在缺陷,还急需改进,以达到能对同震电磁信号收取率;其二是:在正常情况下,地壳岩石是很好的绝缘体,非常不容易导电,致使磁力仪无法记录到同震电磁信号。
匿名  发表于 2020-10-26 10:22
(续上文):作者(遠长江)在此发表不同见解,根据摩擦生电的科学原理,地壳岩石圈大小板块突然发生岩层断裂(指应力达到峰值时),断层两盘岩石发生剧烈错动、极高强度摩擦,必然产生摩擦生电,那么同震电磁信号必然会同时出现,这是无法否定的事实。那为什么磁力仪记录没有收到同震电磁信号呢?作者(遠长江)分析,可能存在两个原因:其一是现代磁力仪仪器还存在缺陷,还急需改进,以达到能对同震电磁信号收取率;其二是:在正常情况下,地壳岩石是很好的绝缘体,非常不容易导电,致使磁力仪无法记录到同震电磁信号。
匿名  发表于 2020-10-26 10:22
(续上文):作者(遠长江)在此发表不同见解,根据摩擦生电的科学原理,地壳岩石圈大小板块突然发生岩层断裂(指应力达到峰值时),断层两盘岩石发生剧烈错动、极高强度摩擦,必然产生摩擦生电,那么同震电磁信号必然会同时出现,这是无法否定的事实。那为什么磁力仪记录没有收到同震电磁信号呢?作者(遠长江)分析,可能存在两个原因:其一是现代磁力仪仪器还存在缺陷,还急需改进,以达到能对同震电磁信号收取率;其二是:在正常情况下,地壳岩石是很好的绝缘体,非常不容易导电,致使磁力仪无法记录到同震电磁信号。
匿名  发表于 2020-10-26 15:32
(续上文):利用同震电磁信号建立地震预警系统
同震电磁信号的必然存在,它将造福全人类。虽然它不会影响地震预测,但却是地震提前预警的契机。与地震预测相比,地震预警系统的发展有较成熟的科学基础。简而言之,如果能夠知道大地震在某地发生,那么提前预警信息就能以光速(或电速)传输到遙远的地方,那么预警信息和发生地震的时差就相当于闪电和打电之间的时差。如果地震很近,那么就如同雷声和闪电几乎同时到达一样。某些情况下,地震预警有着非凡特殊的意义。比如在日本,预警系统己经建立了很多年,如果检测到大地震,子弹头列车就会自动停止运行,可以避免大量人员伤亡。1985年,墨西哥城的数千人因为350公里外的地震失去了生命,如果像现在一样有了健全预警系统,检测到海岸的大地震就能夠大量减少人员的伤亡。
匿名  发表于 2020-10-26 16:05
火山是地球上常见的一种地貌形态,是地球在释放内部不断积聚能量的同时,将地球表面地貌进行改变之后形成的特殊地貌。目前世界上的火山总数在2500多座,其中处于沉寂状态的“死火山”数量在2000座左右,而处于活跃期的“活火山”500多座。相信大家对于活火山喷发的壮观场面印象深刻,伴随着地面剧烈的振动,浓烈的烟尘物质和液态岩浆从火山口喷涌而出,有时还会发生强烈的闪电现象。在我们的认知中,在雷雨天气时才会发生闪电,为何火山喷发也会有这种情况呢?
2008111615f5fa0b4056ce792a (1).jpeg
匿名  发表于 2020-10-26 16:07
火山是地球上常见的一种地貌形态,是地球在释放内部不断积聚能量的同时,将地球表面地貌进行改变之后形成的特殊地貌。目前世界上的火山总数在2500多座,其中处于沉寂状态的“死火山”数量在2000座左右,而处于活跃期的“活火山”500多座。相信大家对于活火山喷发的壮观场面印象深刻,伴随着地面剧烈的振动,浓烈的烟尘物质和液态岩浆从火山口喷涌而出,有时还会发生强烈的闪电现象。在我们的认知中,在雷雨天气时才会发生闪电,为何火山喷发也会有这种情况呢?
2008111615f5fa0b4056ce792a.jpeg
匿名  发表于 2020-10-26 16:08
火山是地球上常见的一种地貌形态,是地球在释放内部不断积聚能量的同时,将地球表面地貌进行改变之后形成的特殊地貌。目前世界上的火山总数在2500多座,其中处于沉寂状态的“死火山”数量在2000座左右,而处于活跃期的“活火山”500多座。相信大家对于活火山喷发的壮观场面印象深刻,伴随着地面剧烈的振动,浓烈的烟尘物质和液态岩浆从火山口喷涌而出,有时还会发生强烈的闪电现象。在我们的认知中,在雷雨天气时才会发生闪电,为何火山喷发也会有这种情况呢?
u=1908799744,2456024797&fm=173&app=49&f=JPEG.jpeg
匿名  发表于 2020-10-26 16:14
电荷的中和反应
世界上所有的宏观物质,无论是我们用肉眼能够看到的各种物体,还是组成大气的各种气体分子,都是由原子所构成,而原子是由处于核心位置的原子核和核外电子组成。原子核带正电,电子带负电,而且原子核所带的正电量与电子所带的负电量总量相等,在正常情况下,这个原子包括原子所组成的物质,对外表现出正负电荷平衡的状态,也就是不表现出带电性。
匿名  发表于 2020-10-26 16:15
如果由于一些特殊的原因,使得原子核的核外电子挣脱了原子核的束缚,那么这个原子以及由其组成的物质就会因失去负电荷而呈现带正电性,而得到那些“游离”电子的原子以及由其组成的物质,就会相应地呈现带负电性。
匿名  发表于 2020-10-26 16:16
如果由于一些特殊的原因,使得原子核的核外电子挣脱了原子核的束缚,那么这个原子以及由其组成的物质就会因失去负电荷而呈现带正电性,而得到那些“游离”电子的原子以及由其组成的物质,就会相应地呈现带负电性。
匿名  发表于 2020-10-26 16:16
当这两个分别具有带不同性质电荷的物质相互接触时,它们之间的电场强度就会增加,两个物体之间的“空气隔层”就会被电离,从而形成一个可以导电的通道,两个物体上的正负电荷,通过这个导电通道,就会彼此吸引到一起,发生正负电荷的中和。与此同时,在不同性质电荷的中和过程中,它们本身在电场中的电势能也将消失,根据能量守恒定律,电势能转化为热能被释放了出来。
匿名  发表于 2020-10-26 16:18
使物体产生电荷聚集的方式
大家在上学进行物理课学习时,应该会对摩擦起电印象深刻,比如用梳子梳头、冬天脱毛衣,都会产生明显的带电现象,这种情况就是通过摩擦的方式,使物体表面产生了静电。而从物体表面产生电荷聚集的条件来看,必须要有可以使相应电荷从一个物体转移到一个物体,从而使相同类型的电荷在物体的一定部位聚集。而出现电荷聚集的物体,与其它不带电或者带有相反电荷的物体靠近时,产生一定的电位差,从而推动形成可供电荷转移的导电通道,进而形成电流。
匿名  发表于 2020-10-26 16:18
实际上,使物体产生电荷聚集现象的路径有很多种,而摩擦起电只是其中的一种方式。
摩擦起电:两个不同物体互相摩擦时,由于它们组成原子中的原子核,对核外电子的束缚能力不同,因此会有一个物体失去电子,而另外一个物体得到电子。
感应起电:在一定范围之内,带电物体可以诱导与它并不相连的附近中性物体,使其不同部位的自由电荷重新进行分布,从而使物体不同部位出现等量的正负感应电荷。
极化起电:在静电场的作用下,通过电荷束缚力的位移,使电介质的内部和外部呈现不均匀分布的电荷,这个物体就出现了极化电荷。
附着带电:某种极性离子或者拥有自由电子的带电微粒,当附着在一个绝缘体之上时,也会使该绝缘体表面带有一定的电荷。
匿名  发表于 2020-10-26 16:20
闪电发生的原理
空气中出现闪电,其实原理也是正负电荷的中和反应而已,只不过其规模更大、范围更广。我们拿雷雨天气中出现闪电为例,简要分析一下闪电发生的主要过程。
匿名  发表于 2020-10-26 16:20
1、空气的强烈对流。在雷雨天气要发生时,空气中的水汽含量比较充足,近地面的空气受热上升,上层较冷空气下沉,冷暖空气在空中形成强烈的对流现象。
2、冰晶颗粒的碰撞和摩擦。含有较多水汽的热空气在上升到一定高度之后,就会因温度的降低发生凝结,形成微小的冰晶,在空气对流的扰动之下,这些冰晶就会发生激烈的碰撞和摩擦,从而分别带上了不同的电荷。
3、不同电荷的冰晶重新组合分布。一些带有不同性质电荷的冰晶会在形成之后立即就会发生电荷的中和反应,而有一些质量较大的冰晶吸引自由电子的能力较强,在重力作用下,会在没有发生电荷中和之前逐渐聚集到云层的下端呈现大规模的带负电云层,而质量较小的冰晶则失去电子被气流推到云层的上端,形成大规模的带正电云层。
4、产生巨大的电位差。当两端的云层带有的正负电荷量达到一定程度之后,就会因巨大的电位差使中间相隔的空气发生电离,形成正负电荷可以相互吸引和流动的导体通道,于是产生剧烈的放电现象,闪电就这样形成了。
匿名  发表于 2020-10-26 16:21
火山闪电
火山爆发有时伴随着闪电,其形成原理与雷电天气出现的闪电基本一致,都是不同性质的电荷发生的强烈中和反应,只不过参与电荷转移和中和的物质载体不太一样。
从火山喷发的物质组成来看,除了炙热呈熔融态的岩浆以外,还夹杂着大量的火山灰以及部分水蒸气、二氧化碳、一氧化碳、硫化氢、氨气、氮气等。在火山喷发巨大上升气流的推动下,使上空一定范围内的空间中,产生至少两种主要的物质摩擦和碰撞模式。
匿名  发表于 2020-10-26 16:22
第一种是在气流带动下的空气分子之间的摩擦。由于喷出的物质和气流温度很高,而且在喷力的加持下,上升速度很快,而周围区域空气的温度相对很低,于是就会出现上下层空气之间的剧烈对流,以及周围平行区域冷空气的快速补充等气流移动现象,这种剧烈的摩擦可以使不同的气体分子分别带上不同的电荷。
第二种是火山喷发物之间的摩擦。在向上巨大推力的作用下,火山喷出物中的火山灰、微小岩石碎片等颗粒之间,会产生剧烈的摩擦和碰撞,然后在重力作用下出现不同的分层结构,上下层之间分别带有不同的电荷。
通过上述两个方面的作用过程,使得火山喷出物在上升云层中出现了不同的分层结构,下层带负电、上层带正电,正负电荷当积累到可以使中间区域的空气产生电离时,就会爆发闪电现象了。
匿名  发表于 2020-10-26 16:22
第一种是在气流带动下的空气分子之间的摩擦。由于喷出的物质和气流温度很高,而且在喷力的加持下,上升速度很快,而周围区域空气的温度相对很低,于是就会出现上下层空气之间的剧烈对流,以及周围平行区域冷空气的快速补充等气流移动现象,这种剧烈的摩擦可以使不同的气体分子分别带上不同的电荷。
第二种是火山喷发物之间的摩擦。在向上巨大推力的作用下,火山喷出物中的火山灰、微小岩石碎片等颗粒之间,会产生剧烈的摩擦和碰撞,然后在重力作用下出现不同的分层结构,上下层之间分别带有不同的电荷。
通过上述两个方面的作用过程,使得火山喷出物在上升云层中出现了不同的分层结构,下层带负电、上层带正电,正负电荷当积累到可以使中间区域的空气产生电离时,就会爆发闪电现象了。
匿名  发表于 2020-10-26 16:22
总结一下
火山爆发时出现闪电现象,原理和我们常见的雷闪天气是一致的,都是正负电荷的中和反应,只是火山闪电中电荷聚集所依靠的载体,是火山喷发物中的气体和微小颗粒,而雷电中所依靠的载体是微小的冰晶而已。
匿名  发表于 2020-10-27 13:13
谁能发明和研制出《地震制动仪》:
《地震制动仪》的功能是使达到地面的地震波(包括纵波、横波、面波)统统予以尽快扩散、消能,免除地面过分震动而造成建筑物破坏和人畜伤亡。谁能研制和发明这种地震制动仪,肯定能获得诺贝尔奖。
作者(逺长江)在此提示几点:
(1)、对地震波进行干扰与反射;(2)、对地震波进行买巧扩散与消能;(3)、找出地震波传播的绝缘体材料;(4)、地震波在三态物质中传播特性;(5)、采取加固施工处理措施,加强地壳大小板块的力学抗震稳定性;(6)、我国古代东汉时期张衡发明了矦风地动仪;作者(逺长江)在这里提出的《制动仪》,或称《抗动仪》;张衡发明的《矦風地动仪》是测《动》,作者这里所搞的是制《动》,使其地壳岩石永久处于稳定、制止它不《动》。这是两条完全不同的道路。(7)研制《地震制动仪》采取抗衡制动的手法:加大《板块》的质量,提高《板块》密度。比如庞大的喜马拉雅山脉,高耸直插云霄,山盘雄厚,可他却无法与原子核相匹配媲美,原子核的密度之数量级达10^1⁴克/厘米3,可以设想,如果把原子核一个一个的排起来装满一个火柴盒,那它重量就相当于喜马拉雅山的重量。(8)、地球是个硕大无朋的磁体。磁生电、电生磁,电磁效应;磁与电具有“同性相斥,异性相吸”的特征,它也是研制和发明《地震制动仪》的一个思维侧面。(9)、地球既然是个硕大无朋的磁体,那么就能设法使它变成具有硕大无朋的电源体。(10)、利用能量转换制衡原理,将地震巨大动能如何转化为电能或热能等,达到制衡抗动(震动)。
匿名  发表于 2020-10-27 13:21
谁能发明和研制出《地震制动仪》:
《地震制动仪》的功能是使达到地面的地震波(包括纵波、横波、面波)统统予以尽快扩散、消能,免除地面过分震动而造成建筑物破坏和人畜伤亡。谁能研制和发明这种地震制动仪,肯定能获得诺贝尔奖。
作者(逺长江)在此提示几点:
(1)、对地震波进行干扰与反射;(2)、对地震波进行买巧扩散与消能;(3)、找出地震波传播的绝缘体材料;(4)、地震波在三态物质中传播特性;(5)、采取加固施工处理措施,加强地壳大小板块的力学抗震稳定性;(6)、我国古代东汉时期张衡发明了矦风地动仪;作者(逺长江)在这里提出的《制动仪》,或称《抗动仪》;张衡发明的《矦風地动仪》是测《动》,作者这里所搞的是制《动》,使其地壳岩石永久处于稳定、制止它不《动》。这是两条完全不同的道路。(7)研制《地震制动仪》采取抗衡制动的手法:加大《板块》的质量,提高《板块》密度。比如庞大的喜马拉雅山脉,高耸直插云霄,山盘雄厚,可他却无法与原子核相匹配媲美,原子核的密度之数量级达10^1⁴克/厘米3,可以设想,如果把原子核一个一个的排起来装满一个火柴盒,那它重量就相当于喜马拉雅山的重量。(8)、地球是个硕大无朋的磁体。磁生电、电生磁,电磁效应;磁与电具有“同性相斥,异性相吸”的特征,它也是研制和发明《地震制动仪》的一个思维侧面。(9)、地球既然是个硕大无朋的磁体,那么就能设法使它变成具有硕大无朋的电源体。(10)、利用能量转换制衡原理,将地震巨大动能如何转化为电能或热能等,达到制衡抗动(震动)。
匿名  发表于 2020-10-27 15:43
对231楼、232楼文稿内容订正后版本:
谁能发明和研制出《地震制动仪》:
《地震制动仪》的功能是使达到地面的地震波(包括纵波、横波、面波)统统予以尽快扩散、消能,免除地面过分震动而造成建筑物破坏和人畜伤亡。谁能研制和发明这种地震制动仪,肯定能获得诺贝尔奖。
作者(逺长江)在此提示几点:
(1)、对地震波进行干扰与反射;(2)、对地震波进行灵巧扩散与消能;(3)、找出地震波传播的绝缘体材料;(4)、设法阻断横波、纵波反复迭加而成面波(长波),则可大大降低災情;(5)、采取加固施工处理措施,加强地壳大小板块的力学抗震稳定性;(6)、我国古代东汉时期张衡发明了矦风地动仪;作者(逺长江)在这里提出的《制动仪》,或称《抗动仪》;张衡发明的《矦風地动仪》是测《动》,作者在这里所研制的是制《动》,使其地壳岩石永久处于稳定、制止它不《动》。这是两条完全不同的路线。(7)研制《地震制动仪》采取抗衡制动的手法:加大《板块》的质量,提高《板块》密度。比如庞大的喜马拉雅山脉,高耸直插云霄,山盘雄厚,可他却无法与原子核相匹配媲美,原子核的密度之数量级达10^14克/厘米3,可以设想,如果把原子核一个一个的排起来装满一个火柴盒,那它重量就相当于喜马拉雅山的重量。(8)、地球是个硕大无朋的磁体。磁生电、电生磁,所谓电磁效应;磁与电具有“同性相斥,异性相吸”的特征,它也是研制和发明《地震制动仪》的一个思维侧面。(9)、地球既然是个硕大无朋的磁体,那么就能设法使它变成具有硕大无朋的电源体。(10)、利用能量转换制衡原理,将地震巨大动能如何转化为电能或热能等,达到制衡抗动(抗震动)。
匿名  发表于 2020-10-27 16:21
我国古代东汉时期张衡发明了《矦风地动仪》,是世界上最早的第一台地动仪。作者认为,它虽然是我国古代的重大发明,但张衡犯了方向性错误。而且带动全球后学者在此后两千余年时间里跟着走向错误路线。为什么这样说呢?因为地动仪是测地动,而不是制动和抗动。地动(指地震)已经发生,即便能 及时测到地动,又有何用呢?灾难己经发生,房屋已经倒塌,死难者已经遇难,巳经来不及补救和抢救!一切无济于事!只能处理后事和重建,悔之晚矣!而《制动》、《抗动》才是正确可靠方略。或事先加固处理,加强抗震、抗动等级,以减轻与消除地震灾情,才是正确举措。可至今还有许多地震工作人员尚未醒悟,还在一心热衷于地震预测,说什么预测成功!预测准确!预测漏报!实在可悲和愚蠢!
匿名  发表于 2020-10-27 17:44
我国古代东汉时期张衡发明了《矦风地动仪》,是世界上最早的第一台地动仪。作者认为,它虽然是我国古代的重大发明,但张衡犯了方向性错误。而且带动全球后学者在此后两千余年时间里跟着走向错误路线。为什么这样说呢?因为地动仪是测地动,而不是制动和抗动。地动(指地震)已经发生,即便能 及时测到地动,又有何用呢?灾难己经发生,房屋已经倒塌,死难者已经遇难,巳经来不及补救和抢救!一切无济于事!只能处理后事和重建,悔之晚矣!而《制动》、《抗动》才是正确可靠方略。或事先加固处理,加强抗震、抗动等级,以减轻与消除地震灾情,才是正确举措。可至今还有许多地震工作人员尚未醒悟,还在一心热衷于地震预测,说什么预测成功!预测准确!预测漏报!实在可悲和愚蠢!
匿名  发表于 2020-10-28 17:52
不是《板块碰撞》理论,应是《板块分裂》理论:(作者:遠长江)2020、10、28日。
每当全球某地发生7级以上大地震时,地震学家就会搬出《板块挤压、碰撞》理论来进行解说,说某一板块与相邻另一板块的挤压碰撞而引发地震。作者认为,板块挤压如同甲、乙两者对牛;也似同两个邻国因摩擦生事引发战争,最后造成鸿沟和分裂。对地壳板块而言,断裂线就是板块对牛造成的分割产物;断层就是板块挤压错动、摩擦、分裂的永恒遗跡;断层线就成了板块的边界线,如同一个国家的边境国界线。
现在請问一个板块是否完整无缝呢?非也。板块内仍然分布有无数中、小断裂与断层,它们一旦连接串通,就会分割成中、小板块,引发中、小型地震。地震和断裂的发生,不是挤压碰撞,而是挤压错动、破碎、摩擦、分裂,各自独立为《板块》。鸿沟、缝裂一旦生成,再无从弥合。分裂是自然规律,能弥补分裂的只有两种方式:一是人为实行高压固结灌浆(对断层自上而下实施灌浆);二者地幔岩浆沿断裂、裂隙向上伸展、扩张,形成侵入岩体,如岩床、岩墙、岩盘、岩柱、岩脉…等,势必引起《板块》地动,即天然地震。分裂与地动是往返永恒出现的自然规律,既永恒分裂,又永恒侵入填充,永不停休。
匿名  发表于 2020-10-29 09:15
不是《板块碰撞》理论,应是《板块分裂》理论:(作者:遠长江)2020、10、28日。
每当全球某地发生7级以上大地震时,地震学家就会搬出《板块挤压、碰撞》理论来进行解说,说某一板块与相邻另一板块的挤压碰撞而引发地震。作者认为,板块挤压如同甲、乙两者对牛;也似同两个邻国因摩擦生事引发战争,最后造成鸿沟和分裂。对地壳板块而言,断裂线就是板块对牛造成的分割产物;断层就是板块挤压错动、摩擦、分裂的永恒遗跡;断层线就成了板块的边界线,如同一个国家的边境国界线。
现在請问一个板块是否完整无缝呢?非也。板块内仍然分布有无数中、小断裂与断层,它们一旦连接串通,就会分割成中、小板块,引发中、小型地震。地震和断裂的发生,不是挤压碰撞,而是挤压错动、破碎、摩擦、分裂,各自独立为《板块》。鸿沟、缝裂一旦生成,再无从弥合。分裂是自然规律,能弥补分裂的只有两种方式:一是人为实行高压固结灌浆(对断层自上而下实施灌浆);二者地幔岩浆沿断裂、裂隙向上伸展、扩张,形成侵入岩体,如岩床、岩墙、岩盘、岩柱、岩脉…等,势必引起《板块》地动,即天然地震。分裂与地动是往返永恒出现的自然规律,既永恒分裂,又永恒侵入填充,永不停休。
匿名  发表于 2020-10-29 10:18
不是《板块碰撞》理论,应是《板块分裂》理论:(作者:遠长江)2020、10、28日。
每当全球某地发生7级以上大地震时,地震学家就会搬出《板块挤压、碰撞》理论来进行解说,说某一板块与相邻另一板块的挤压碰撞而引发地震。作者认为,板块挤压如同甲、乙两者对牛;也似同两个邻国因摩擦生事引发战争,最后造成鸿沟和分裂。对地壳板块而言,断裂线就是板块对牛造成的分割产物;断层就是板块挤压错动、摩擦、分裂的永恒遗跡;断层线就成了板块的边界线,如同一个国家的边境国界线。
现在請问一个板块是否完整无缝呢?非也。板块内仍然分布有无数中、小断裂与断层,它们一旦连接串通,就会分割成中、小板块,引发中、小型地震。地震和断裂的发生,不是挤压碰撞,而是挤压错动、破碎、摩擦、分裂,各自独立为《板块》。鸿沟、缝裂一旦生成,再无从弥合。分裂是自然规律,能弥补分裂的只有两种方式:一是人为实行高压固结灌浆(对断层自上而下实施灌浆);二者地幔岩浆沿断裂、裂隙向上伸展、扩张,形成侵入岩体,如岩床、岩墙、岩盘、岩柱、岩脉…等,势必引起《板块》地动,即天然地震。分裂与地动是往返永恒出现的自然规律,既永恒分裂,又永恒侵入填充,永不停休。
匿名  发表于 2020-10-29 10:38
不是《板块碰撞》理论,应是《板块分裂》理论:(作者:遠长江)2020、10、28日。
每当全球某地发生7级以上大地震时,地震学家就会搬出《板块挤压、碰撞》理论来进行解说,说某一板块与相邻另一板块的挤压碰撞而引发地震。作者认为,板块挤压如同甲、乙两者对牛;也似同两个邻国因摩擦生事引发战争,最后造成鸿沟和分裂。对地壳板块而言,断裂线就是板块对牛造成的分割产物;断层就是板块挤压错动、摩擦、分裂的永恒遗跡;断层线就成了板块的边界线,如同一个国家的边境国界线。
现在請问一个板块是否完整无缝呢?非也。板块内仍然分布有无数中、小断裂与断层,它们一旦连接串通,就会分割成中、小板块,引发中、小型地震。地震和断裂的发生,不是挤压碰撞,而是挤压错动、破碎、摩擦、分裂,各自独立为《板块》。鸿沟、缝裂一旦生成,再无从弥合。分裂是自然规律,能弥补分裂的只有两种方式:一是人为实行高压固结灌浆(对断层自上而下实施灌浆);二者地幔岩浆沿断裂、裂隙向上伸展、扩张,形成侵入岩体,如岩床、岩墙、岩盘、岩柱、岩脉…等,势必引起《板块》地动,即天然地震。分裂与地动是往返永恒出现的自然规律,既永恒分裂,又永恒侵入填充,永不停休。
匿名  发表于 2020-10-29 15:34
我国古代东汉时期张衡发明了《矦风地动仪》,是世界上最早的第一台地动仪。作者认为,它虽然是我国古代的重大发明,但张衡犯了方向性错误。而且带动全球后学者在此后两千余年时间里跟着走向错误路线。为什么这样说呢?因为地动仪是测地动,而不是制动和抗动。地动(指地震)已经发生,即便能 及时测到地动,又有何用呢?灾难己经发生,房屋已经倒塌,死难者已经遇难,巳经来不及补救和抢救!一切无济于事!只能处理后事和重建,悔之晚矣!而《制动》、《抗动》才是正确可靠方略。或事先加固处理,加强抗震、抗动等级,以减轻与消除地震灾情,才是正确举措。可至今还有许多地震工作人员尚未醒悟,还在一心热衷于研究什么”地震成因、花落谁家”、鼓吹什么“世界性难题”、又说什么预测成功!预测准确!预测漏报!…等,全是骗人的鬼把戏!实在可悲和愚蠢!
匿名  发表于 2020-10-29 17:26
何谓光子信息?
我们知道量子力学是当今物理学中比较完善的物理科学,无论是宏观物质的运动形式,还是微观世界中物质的运动形式,都能够从量子力学中得到正确的结论,特别是在宏观世界得到的物理规律和结论,在微观世界中很多都不成立,在低速运动中研究出的结果,在高速运动中就会出现不可想象的结果,但是,量子力学的建立将这个世界统一起来了,可以这样讲,是量子力学架起了宏观与微观、低速与高速的桥梁,是量子力学完美地解释了这个世界,如果光子信息的科学,抛弃量子力学,另外建立一个科学体系,这是不正确的,等于是抛弃了一代科学家的研究成果,抛弃了一段科学历程,因此在这里我们说说量子力学与光子信息的关系问题,可以这样讲,光子信息的科学是建立在量子力学之上的,是以量子力学为基础的科学,没有量子力学就没有光子信息科学的支持,不可能有光子信息科学的发展,同样不可能有光子信息科学、生命科学的结论。
匿名  发表于 2020-10-29 17:27
(续上文):作为这个世界的构成上,有关粒子与波研究问题是历来以久了,部分科学家认为是粒子性,部分科学家认为是波,后来的研究发现,有时表现出粒子、有时表现出波动,对一个物质来讲,如果物质质量比较大、体积尺寸比较大,这个物质表现出粒子;如果这个物质质量比较小、体积尺寸比较小,在世界存在中表现出波,就是光子也是这个结论,如果光子的能量比较大,在存在的过程中表现出粒子性,如果光子的能量比较小,在存在的过程中表现出波动性;这只是对这个世界上物质的研究现象,对这个世界的物质构成的看法问题,仍然没有解决,这个世界到底是粒子还是波,这是回答这个世界构成问题的一个根本问题,也是哲学中问到的“世界观”问题。在光子信息理论中,对世界的看法是,自然界的构成是:光子是物质的基本粒子、这个世界是粒子性的;其它的波动性只是物质存在时,相互作用过程中所表现出的一种特殊现象。我们知道,真正能说明物质的波、粒二象性,是德布罗意的物质波,我们可以这样理解物质波,所有物质的波动性,都是由于这种物质在自然界存在的过程中,与光子不断作用的结果。如何证明这个结论,我们可以举这样一个例子:物质的波动性,会在极低的温度下消失,特别是绝对零度的地方,光子的能量密度为零的区域中,物质性不存在,物质的波动性也不存在。通过这个事例,物质的波动性在某种情况下会消失,来说明这个世界原本是粒子构成的。
匿名  发表于 2020-10-29 17:27
(续上文):由于物质光子信息的存在,物质的体积会不断增大;我们说量子力学是研究物质微观世界的内容,所有内容都是将物质粒子看成是波动性来研究的,而我们说这个世界的基本构成是粒子性的内容,为什么还要用量子力学来处理这些问题呢,这是因为自然界不可能存在绝对零度的地方,也就是自然界不可能存在光子能量密度为零的区域,只要光子信息的能量密度不为零,所有物质的波动性都是存在的,物质波就会存在,这就是自然界是由光子和光子信息构成的,是有粒子性的,但是波动性又是自然界普遍的物质现象,用量子力学研究世界中的问题是非常恰当的。
匿名  发表于 2020-10-29 17:29
(续上文):由于物质的微观粒子是由光子组成的光子信息,而这个光子信息又不断地与环境作用光子,才能将物质的各种性质表现出来,在作用光子的同时,粒子表现出了波动性,就好像粒子是由波来形成的,这样将物质的微观粒子看成是一个波包,这正是量子力学的物理模型;一个波函数,在自然界中,由于波的存在和波在自然界运行,会发生色散,这个波束是要随着时间的流逝,波束的大小 是要变大的。
匿名  发表于 2020-10-29 17:31
研究地震就必需知晓地震波(包括体波、横波、纵波、面波、波长、波速…等内容),地震波是由震源发射体、发射出来的地震波,它的传播介质是固体(地壳岩石),地震波是能量波。请问何谓《波》?請参阅241楼至244楼文稿内容。
匿名  发表于 2020-10-31 16:55
磁与电是什么关系?
解释一:电是宇宙中物质的固有属性,物质分两种,正和负,正负之间通过强大的吸引力相结合,从而形成原子,分子等,最小的带电粒子是电子,磁场可以说是由电子的自旋产生的,变化的电场产生磁场.

解释二:平时听说过许多电和磁连在一起的词汇,如电磁铁、电磁炉、电磁波、电磁场等,电与磁究竟是怎样的关系? 人们把电磁场与导体的相互作用而产生电的现象称为电磁感应。H·C·奥斯特在1820年发现电流的磁效应,揭示了电与磁联系的一个方面之后,不少物理学家探索磁是否也能产生电,曾经进行过不少实验。1831年,M·法拉第发现通电线圈在接通和断开的瞬间,能在邻近线圈中产生感应电流的现象。紧接着奥斯特做了一系列的实验,用来探明产生感应电流的条件和确定电磁效应的规律,法拉第根据电磁感应的规律制作出了第一台发电机。 电磁感应现象的发现在理论上有重大意义。使人们对电和磁之间的联系有更进一步的认识,从而激发人们探索电和磁之间的普遍联系的理论。在实际应用方面有更为重要的意义,电力、电信等工程的发展就同这一发现有密切的关系。发电机、变压器等重要的电力设备都是直接应用电磁感应原理制成,用它们建立电力系统,将各种能源(煤、石油、水力等)转换成电能并输送到需要的地方,极大地推动了社会生产力的发展。
匿名  发表于 2020-10-31 16:56
量子力学 物理学 电磁学:电与磁出自物理学 电磁学。释义:自然界物质能量的力学转换形态 也是带电粒子的运动辐射波。
简介
【释义】自然界物质能量的力学转换形态,也是带电粒子的运动辐射波。
【同义词】电磁
【反义词】磁与电 磁电
【示例】1、在夏季,带电雷雨云层聚集了大量的正负电荷,当两块携带有正负电荷的云层放电时,会伴有电荷碰撞时产生的瞬间雷电脉冲波。
2、金属线圈中有电流通过,就会有磁场产生,交变电流通过电动机绕组产生交变磁场。
匿名  发表于 2020-10-31 16:56
概述
磁体能够吸引钢铁一类的物质。磁体上磁性最强的部位叫做磁极。能够自由转动的磁体,例如悬吊着的磁针,静止时指南的那个磁极叫做南极,又叫S极(因为英文南方South开头第一个字母是S,所以也称S极);指北的那个磁极叫做北极,又叫N极(因为英文北方North的开头字母是N,所以又称N极)。异名磁极相互吸引,同名磁极相互排斥。磁铁吸引铁、钴、镍等物质的性质称为磁性。磁铁两端磁性强的区域称为磁极,一端为南极,一端为北极。磁化是指原本没有磁性的物体,获得磁性的过程。能够被磁化的物质,统称为磁性材料。磁化后,磁性能长期保存的物质叫硬磁体或永磁体,如钢等物质;不能长期保存磁性的物质叫软磁体,如铁等物质。
匿名  发表于 2020-10-31 16:57
(续上文):铁中有许多具有两个异性磁极的原磁体,在无外磁场作用时,这些原磁体排列紊乱,它们的磁性相互抵消,对外不显示磁性。当把铁靠近磁铁时,这些原磁体在磁铁的作用下,整齐地排列起来,使靠近磁铁的一端具有与磁铁极性相反的极性而相互吸引。这说明铁中由于原磁体的存在能够被磁铁所磁化。而铜、铝等金属是没有原磁体结构的,所以不能被磁铁所吸引。
匿名  发表于 2020-10-31 16:57
(续上文):什么是磁性?简单说来,磁性是物质放在不均匀的磁场中会受到磁力的作用。在相同的不均匀磁场中,由单位质量的物质所受到的磁力方向和强度,来确定物质磁性的强弱。因为任何物质都具有磁性,所以任何物质在不均匀磁场中都会受到磁力的作用。
在磁极周围的空间中真正存在的不是磁感线,而是一种场,我们称之为磁场。磁性物质的相互吸引等就是通过磁场进行的。我们知道,物质之间存在万有引力,它是一种引力场。磁场与之类似,是一种布满磁极周围空间的场。磁场的强弱可以用假想的磁力线数量来表示,磁力线密的地方磁场强,磁力线疏的地方磁场弱。单位截面上穿过的磁力线数目称为磁通量密度。
匿名  发表于 2020-10-31 16:58
(续上文):运动的带电粒子在磁场中会受到一种称为洛仑兹(Lorentz)力作用。由同样带电粒子在不同磁场中所受到洛仑磁力的大小来确定磁场强度的高低。特斯拉是磁通密度的国际单位制单位。磁通密度是描述磁场的基本物理量,而磁场强度是描述磁场的辅助量。特斯拉(Tesla.N)(1886—1943)是克罗地亚裔美国电机工程师,曾发明变压器和交流电动机。
物质的磁性不但是普遍存在的,而且是多种多样的,并因此得到广泛的研究和应用。近自我们的身体和周边的物质,远至各种星体和星际中的物质,微观世界的原子、原子核和基本粒子,宏观世界的各种材料,都具有这样或那样的磁性。
匿名  发表于 2020-10-31 16:59
(续上文):世界上的物质究竟有多少种磁性呢?一般说来,物质的磁性可以分为弱磁性和强磁性,再根据磁性的不同特点,弱磁性又分为抗磁性、顺磁性和反铁磁性,强磁性又分为铁磁性和亚铁磁性。这些都是宏观物质的原子中的电子产生的磁性,原子中的原子核也具有磁性,称为核磁性。但是核磁性只有电子磁性的约千分之一或更低,故一般讲物质磁性和原子磁性都主要考虑原子中的电子磁性。原子核的磁性很低是由于原子核的质量远高于电子的质量,而且原子核磁性在一定条件下仍有着重要的应用,例如现在医学上应用的核磁共振成像(也常称磁共振CT,CT是计算机化层析成像的英文名词的缩写),便是应用氢原子核的磁性。
磁性材料可分为软磁性材料如铁和硬磁性材料 如钢就是硬磁性材料。软磁性材料指该材料磁化后磁性不可保持很久。反之,硬磁性材料指材料此话后磁性可以保持比较长的时间。
匿名  发表于 2020-10-31 16:59
历史
历史上,电与磁是分别发现和研究的。很久以前古希腊科学家泰勒斯做了一系列关于静电的观察。从这些观察中,他认为摩擦使琥珀变得磁性化。这与矿石像磁铁矿的性质迥然不同;磁铁矿天然地具有磁。[1] 而磁石最早是在中国发现的,我国古代科学家因此发明了司南和罗盘。[2]
后来,电与磁之间的联系被发现了,如丹麦人奥斯特( H.C.Oersted)发现的电流磁效应和法国人安培发现的电流与电流之间相互作用的规律。再后来,法拉第提出了电磁感应定律,这样电与磁就连成一体了。
匿名  发表于 2020-10-31 17:00
19世纪中叶,麦克斯韦提出了统一的电磁场理论,实现了物理学的第二次大综合。电磁定律与力学规律有一个截然不同的地方。根据牛顿的设想,力学考虑的相互作用,特别是万有引力相互作用,是超距的相互作用,没有力的传递问题(当然,用现代观点看,引力也应该有传递问题),而电磁相互作用是场的相互作用。从粒子的超距作用到电磁场的“场的相互作用”,这在观念上有很大变化。场的效应被突出出来了。
电场与磁场不断相互作用造成电磁波的传播,这一点由赫兹在实验室中证实了。电磁波不但包括无线电波,实际上包括很宽的频谱,其中很重要的一部分就是光波。光学在过去是与电磁学完全分开发展的,麦克斯韦电磁理论建立以后,光学也变成了电磁学的一个分支了,电学、磁学和光学得到了统一。
匿名  发表于 2020-10-31 17:00
这个统一在技术上有重要意义,发电机、电动机几乎都是建立在电磁感应基础上的。电磁波的应用导致现代的无线电技术。直到现在,电磁学在技术上还是起主导作用的一门学问,因此,在基础物理学中电磁学始终保持它的重要地位。
电磁学牵涉到在什么参考系统中来看问题,牵涉到运动导体的电动力学问题。直观地说,“电流即电荷的流动产生磁效应”,但判断电荷是否流动就牵涉到观察者的问题——参考系问题。光学是电磁学的一部分,所以这个问题也可表达成“光的传播与参考系统有什么关系”。迈克耳孙-莫雷实验表明惯性系中真空光速为不变量。这样一来,也就肯定了在惯性系统中电磁学遵循同一规律。这实际上导致了后来的爱因斯坦狭义相对论。狭义相对论基本上是电磁学的进一步发展和推广。迈克耳孙-莫雷实验在19世纪还没能解释清楚,这是19世纪遗留的一个重要问题。
匿名  发表于 2020-10-31 17:00
这个统一在技术上有重要意义,发电机、电动机几乎都是建立在电磁感应基础上的。电磁波的应用导致现代的无线电技术。直到现在,电磁学在技术上还是起主导作用的一门学问,因此,在基础物理学中电磁学始终保持它的重要地位。
电磁学牵涉到在什么参考系统中来看问题,牵涉到运动导体的电动力学问题。直观地说,“电流即电荷的流动产生磁效应”,但判断电荷是否流动就牵涉到观察者的问题——参考系问题。光学是电磁学的一部分,所以这个问题也可表达成“光的传播与参考系统有什么关系”。迈克耳孙-莫雷实验表明惯性系中真空光速为不变量。这样一来,也就肯定了在惯性系统中电磁学遵循同一规律。这实际上导致了后来的爱因斯坦狭义相对论。狭义相对论基本上是电磁学的进一步发展和推广。迈克耳孙-莫雷实验在19世纪还没能解释清楚,这是19世纪遗留的一个重要问题。
匿名  发表于 2020-10-31 17:00
这个统一在技术上有重要意义,发电机、电动机几乎都是建立在电磁感应基础上的。电磁波的应用导致现代的无线电技术。直到现在,电磁学在技术上还是起主导作用的一门学问,因此,在基础物理学中电磁学始终保持它的重要地位。
电磁学牵涉到在什么参考系统中来看问题,牵涉到运动导体的电动力学问题。直观地说,“电流即电荷的流动产生磁效应”,但判断电荷是否流动就牵涉到观察者的问题——参考系问题。光学是电磁学的一部分,所以这个问题也可表达成“光的传播与参考系统有什么关系”。迈克耳孙-莫雷实验表明惯性系中真空光速为不变量。这样一来,也就肯定了在惯性系统中电磁学遵循同一规律。这实际上导致了后来的爱因斯坦狭义相对论。狭义相对论基本上是电磁学的进一步发展和推广。迈克耳孙-莫雷实验在19世纪还没能解释清楚,这是19世纪遗留的一个重要问题。
匿名  发表于 2020-10-31 17:01
这个统一在技术上有重要意义,发电机、电动机几乎都是建立在电磁感应基础上的。电磁波的应用导致现代的无线电技术。直到现在,电磁学在技术上还是起主导作用的一门学问,因此,在基础物理学中电磁学始终保持它的重要地位。
电磁学牵涉到在什么参考系统中来看问题,牵涉到运动导体的电动力学问题。直观地说,“电流即电荷的流动产生磁效应”,但判断电荷是否流动就牵涉到观察者的问题——参考系问题。光学是电磁学的一部分,所以这个问题也可表达成“光的传播与参考系统有什么关系”。迈克耳孙-莫雷实验表明惯性系中真空光速为不变量。这样一来,也就肯定了在惯性系统中电磁学遵循同一规律。这实际上导致了后来的爱因斯坦狭义相对论。狭义相对论基本上是电磁学的进一步发展和推广。迈克耳孙-莫雷实验在19世纪还没能解释清楚,这是19世纪遗留的一个重要问题。
匿名  发表于 2020-10-31 17:02
磁现象
1、磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性)。
2、磁体定义:具有磁性的物质。
分类:永磁体分为 天然磁体、人造磁体。
3、磁极定义:磁体上磁性最强的部分叫磁极。(磁体两端最强中间最弱。)
种类:水平面自由转动的磁体,指南的磁极叫南极(S),指北的磁极叫北极(N)。
作用规律:同名磁极相互排斥,异名磁极相互吸引。
说明:最早的指南针叫司南 。一个永磁体分成多部分后,每一部分仍存在两个磁极。司南是把天然磁石琢磨成勺子的形状,放在一个水平光滑的“地盘”上制成的,静止时它的长柄指向南方。
匿名  发表于 2020-10-31 17:02
4、磁化: ① 定义:使原来没有磁性的物体获得磁性的过程。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成 异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。钢被磁化后,磁性能长期保持,称为硬磁性材料。所以制造永磁体使用钢 ,制造电磁铁的铁芯使用软铁。
5、物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。②根据磁体的指向性判断。③根据磁体相互作用规律判断。④根据磁极的磁性最强判断。
匿名  发表于 2020-10-31 17:03
4、磁化: ① 定义:使原来没有磁性的物体获得磁性的过程。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成 异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。钢被磁化后,磁性能长期保持,称为硬磁性材料。所以制造永磁体使用钢 ,制造电磁铁的铁芯使用软铁。
5、物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。②根据磁体的指向性判断。③根据磁体相互作用规律判断。④根据磁极的磁性最强判断。
匿名  发表于 2020-10-31 17:04
现代应用
练习:☆磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。( 填“软”和“硬”)
☆ 磁悬浮列车底部装有用超导体线圈饶制的电磁体,利用磁体之间的相互作用,使列车悬浮在轨道的上方以提高运行速度,这种相互作用是指:同名磁极的相互排斥作用,和异名磁极的相互吸引作用。
☆放在条形磁铁南极附近的一根铁棒被磁化后,靠近磁铁南极的一端是磁北极。
☆用磁铁的N极在钢针上沿同一方向摩擦几次 。
钢针被磁化那么钢针的右端被磁化成 S极。
6.发现者:第一位发现的是丹麦科学家奥斯特
匿名  发表于 2020-10-31 17:04
磁场
1、定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它所产生的作用来认识它。这里使用的是转换法。通过电流的效应认识电流也运用了这种方法。
2、基本性质:磁场对放入其中的磁体产生力的作用。磁极间的相互作用是通过磁场而发生的。
3、方向规定:在磁场中的某一点,小磁针北极静止时所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。
匿名  发表于 2020-10-31 17:04
4、磁感应线:
①性质:为了形象的描述物体周围的磁场分布,英国物理学家法拉第(Michreal Faraday)引入的模型。
②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。
③典型磁感线:如条形磁铁磁感线,U型磁铁等
④说明:A、磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。但磁场客观存在。
B、用磁感线描述磁场的方法叫建立理想模型法。
C、磁感线是封闭的曲线。
D、磁感线立体的分布在磁体周围,而不是平面的。
E、磁感线不相交。
F、磁感线的疏密程度表示磁场的强弱。
5、磁极受力:在磁场中的某点,北极所受磁力的方向跟该点的磁场方向一致,南极所受磁力的方向跟该点的磁场方向相反。
匿名  发表于 2020-10-31 17:05
6、电流的磁场:
①奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。该现象在1820年被丹麦的物理学家奥斯特发现。该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。
②通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。其两端的极性跟电流方向有关,电流方向与磁极间的关系可由右手螺旋定则来判断,用右手握螺旋管,让四指弯向螺旋管中的电流方向,大拇指所指方向的那一端就是通电螺线管的北极。
匿名  发表于 2020-10-31 17:05
6、电流的磁场:
①奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。该现象在1820年被丹麦的物理学家奥斯特发现。该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。
②通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。其两端的极性跟电流方向有关,电流方向与磁极间的关系可由右手螺旋定则来判断,用右手握螺旋管,让四指弯向螺旋管中的电流方向,大拇指所指方向的那一端就是通电螺线管的北极。
匿名  发表于 2020-10-31 17:05
地磁场
① 定义:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。
②磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。且地磁场磁极与地理两极并没有互相重合,存在磁偏角。
③磁偏角:首先由我国宋代的沈括发现。并在《梦溪笔谈》中提到。磁针的北极指示地理位置的北方和地磁的南方,磁针的南极指示地理位置的南方和地磁的北方 。
④形状:跟条形磁体的磁场很相似。
匿名  发表于 2020-10-31 17:06
记忆口诀
1.磁现象
磁体两端磁极强,指南S指北N.[3]
异名相吸同名排(斥),常见磁体靠磁化。
2.磁场
磁场方向有规定,磁针静止北极指。
磁体外部磁感线,北极(N)出发回南极(S)。
地球周围地磁场,沈括发现磁偏角。
匿名  发表于 2020-10-31 17:06
3.电生磁
电流周围有磁场,证明丹麦奥斯特。
通电螺管磁极判,安培定则伸右手。
四指沿着电流走,旋转方向不能反。
大拇所指为N极,掌切所标为S.
4.电磁铁
螺管磁性强弱定,电流匝数插铁芯。
带有铁芯螺线管,通常叫做电磁铁。
开关控制磁有无,电流控制磁强弱。
匿名  发表于 2020-10-31 17:06
3.电生磁
电流周围有磁场,证明丹麦奥斯特。
通电螺管磁极判,安培定则伸右手。
四指沿着电流走,旋转方向不能反。
大拇所指为N极,掌切所标为S.
4.电磁铁
螺管磁性强弱定,电流匝数插铁芯。
带有铁芯螺线管,通常叫做电磁铁。
开关控制磁有无,电流控制磁强弱。
匿名  发表于 2020-10-31 17:08
5.电动机
通电线圈磁场中,受力作用会转动。
定子不动转子转,持续转动换向器。
控制方便效率高,电能转化机械能。
6.磁生电
电磁感应法拉第,磁生电要闭电路。
部分导体切磁线,感应电流线中有。
方向改变交流电,机械能化为电能。
匿名  发表于 2020-11-1 11:18
请问何谓《能》?能量能否人为转化和利用?
《能》,能量之简称也。或称能力、本领、能耐、力量…等含义。而地震活动是能量的长期聚集和瞬时快速能量释放。一谈到能量,人们就会想到热能、动能、势能、化学能、核能、原子能等,其实还有光能、水能、风能、电能、材能(包括煤、石油、天然气、甲烷、石材…等)、产能、机能(机械能、工作机能等)、功能、体能、食能(生物有机化合能)、…等;另外,现时代又有人工智能、才能、技能……等。
水能、風能、海浪动能、材能(包括煤、石油、天然气、甲烷、…等)、太阳光能、核能、…等动能,现均已被人类开发利用,被人为转化为电能或热能;那么火山喷发和地震活动的巨型动能,如何人为开发利用、变災难为福源。这是世界各国科学家肩负的艰巨而光荣的伟大使命!这个千吨重担只有依靠伟大、功勋盖世、英才杰出的科学家、专家、教授、高级科技工作者來共同完成,造福全人类!科学技术事业至高无上、万万载!永登高峰!
匿名  发表于 2020-11-1 13:16
伟大的科学家、电的发明家富兰克林:
法国堵哥的两行诗,极恰切地概括富兰克林在科学上和政治上的伟大贡献和成就。富兰克林只受过两年教育而获博士学位。
堵哥诗:获闪电于上苍兮,夺威权于暴王。
匿名  发表于 2020-11-1 16:00
要千万牢记,要把精力和宝贵时间用在正确的准点上,不要把精力和时光浪费去搞什么“地震预测”、“世界性难题”。如同猴子井里水中捞月一场空,错把月影当成真月亮,徒劳呀!没有击中目标。作者(遠长江)在109楼、110楼文稿中谈到:
我国古代东汉时期张衡发明了《矦风地动仪》,是世界上最早的第一台地动仪。作者认为,它虽然是我国古代的重大发明,但张衡犯了方向性错误。而且带动全球后学者在此后两千余年时间里跟着走向错误路线。为什么这样说呢?因为地动仪是测地动,而不是制动和抗动。地动(指地震)已经发生,即便能 及时测到地动,又有何用呢?灾难己经发生,房屋已经倒塌,死难者已经遇难,巳经来不及补救和抢救!一切无济于事!只能善后处理死难者后事和废墟上重建家园,悔之晚矣!而《制动》、《抗动》才是正确可靠方略。或事先加固处理,加强抗震、抗动等级,以减轻与消除地震灾情,才是正确举措。可至今还有许多地震工作人员尚未醒悟,还在一心热衷于研究什么”地震成因、花落谁家”、鼓吹什么“世界性难题”、又说什么预测成功!预测准确!预测漏报!…等,全是骗人的鬼玩戏!实在可悲和愚蠢!
匿名  发表于 2020-11-2 15:10
谈《动》与《不动》:
比如汽车、火车、飞机、轮船、火箭、飞船、导弹、人造卫星、…等运行物,人们希望它们运行速度越快越好,希望它们动速前行;可有些东西不能动,一动就会造成灾难。比如地壳、地面一旦发生震动,就会出现房屋倒塌、毁坏和人兽伤亡,所以地壳与地面处于长久稳定不动为最好。轮船在水面上行驶,水面风平浪静,有利于船舶安全航行;如水面汹涌澎湃、波涛滚滚,容易将船体掀翻。物体的《动》,必须在人为可控范围,一旦失控,就会造成灾难。人类对于地动(指地震)自然灾害,已历险四千余年,可至今无法战胜它。
匿名  发表于 2020-11-2 15:11
谈《动》与《不动》:
比如汽车、火车、飞机、轮船、火箭、飞船、导弹、人造卫星、…等运行物,人们希望它们运行速度越快越好,希望它们动速前行;可有些东西不能动,一动就会造成灾难。比如地壳、地面一旦发生震动,就会出现房屋倒塌、毁坏和人兽伤亡,所以地壳与地面处于长久稳定不动为最好。轮船在水面上行驶,水面风平浪静,有利于船舶安全航行;如水面汹涌澎湃、波涛滚滚,容易将船体掀翻。物体的《动》,必须在人为可控范围,一旦失控,就会造成灾难。人类对于地动(指地震)自然灾害,已历险四千余年,可至今无法战胜它。
匿名  发表于 2020-11-4 10:56
何谓磁畴和磁畴形成原理?
磁畴(Magnetic Domain),理论是用量子理论从微观上说明铁磁质的磁化机理。所谓磁畴,是指铁磁体材料在自发磁化的过程中为降低静磁能而产生分化的方向各异的小型磁化区域,每个区域内部包含大量原子,这些原子的磁矩都像一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同,如图所示。各个磁畴之间的交界面称为磁畴壁。宏观物体一般总是具有很多磁畴,这样,磁畴的磁矩方向各不相同,结果相互抵消,矢量和为零,整个物体的磁矩为零,它也就不能吸引其它磁性材料。也就是说磁性材料在正常情况下并不对外显示磁性。只有当磁性材料被磁化以后,它才能对外显示出磁性。
匿名  发表于 2020-11-4 10:56
简介
分子或原子是构成物质材料的基元,基元中电子绕着原子核的运转形成了电流,该电流产生的磁场,使每个基元都相当于一个微小的磁体,由大量基元组成一个集团结构,集团中所有基元产生的磁场都同方向整齐排列,这样的集团叫做磁畴。在居里温度以下,在大块铁磁性或亚铁磁性(见铁氧体)单晶体(或多 晶体中的晶粒)中,形成很多小区域,每个区域内的原子磁矩沿特定的方向排列,呈现均匀的自发磁化。但是在不同的区域内,磁矩的方向不同,使得晶体总的磁化强度为零。这种自发磁化的小区域也称为磁畴。
匿名  发表于 2020-11-4 10:57
(续上文):图为用粉纹法在Si-Fe单晶的(001)面上观察到的磁畴结构,磁化方向已用箭头表示出。
在铁磁性物质内部,由于原子的磁矩不等于零,每一个原子的表现就好似微小的永久磁铁。假设聚集于一个小区域的原子,其磁矩都均匀地同向平行排列,则称这小区域为磁畴或外斯畴(Weiss domain)。使用磁力显微镜(magnetic  microscope),可以观测到磁畴。
磁畴的种类分为:a)单独磁畴。b)两个异向磁畴。c)多个磁畴,最小能量态。磁畴所生成的磁场以带箭头细曲线表示。磁化强度以带箭头粗直线表示。
三种铁磁性物质:纯铁、硅铁和钴,磁畴结构如图。纯铁(图a)的磁畴结构为迷宫形状,硅铁(图b)则是针叶形状,钴(图c)的磁畴结构与纯铁和硅铁都不相同。
匿名  发表于 2020-11-4 10:57
(续上文):图为用粉纹法在Si-Fe单晶的(001)面上观察到的磁畴结构,磁化方向已用箭头表示出。
在铁磁性物质内部,由于原子的磁矩不等于零,每一个原子的表现就好似微小的永久磁铁。假设聚集于一个小区域的原子,其磁矩都均匀地同向平行排列,则称这小区域为磁畴或外斯畴(Weiss domain)。使用磁力显微镜(magnetic  microscope),可以观测到磁畴。
磁畴的种类分为:a)单独磁畴。b)两个异向磁畴。c)多个磁畴,最小能量态。磁畴所生成的磁场以带箭头细曲线表示。磁化强度以带箭头粗直线表示。
三种铁磁性物质:纯铁、硅铁和钴,磁畴结构如图。纯铁(图a)的磁畴结构为迷宫形状,硅铁(图b)则是针叶形状,钴(图c)的磁畴结构与纯铁和硅铁都不相同。
匿名  发表于 2020-11-4 10:58
(续接上文):磁畴的形状、尺寸、磁畴壁的厚度由交换能、退磁场能、磁晶各向异性能及磁弹性能来决定。平衡状态的磁畴结构,应具有最小的能量。
匿名  发表于 2020-11-4 10:58
(续接上文):
原理简析
在铁磁质中相邻电子之间存在着一种很强的“交换耦合”作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。如图所示。
匿名  发表于 2020-11-4 10:59
(续接上文):磁畴的存在是能量极小化的后果。这是物理学家列夫·朗道和叶津·李佛西兹(Evgeny Lifshitz)提出的点子。假设一个铁磁性长方体是单独磁畴(图a),则会有很多正磁荷与负磁荷分别形成于长方块的顶面与底面,从而拥有较强烈的磁能。假设铁磁性长方块分为两个磁畴(图b),其中一个磁畴的磁矩朝上,另一个朝下,则会有正磁荷与负磁荷分别形成于顶面的左右边,又有负磁荷与正磁荷相反地分别形成于底面的左右边,所以,磁能较微弱,大约为图a的一半。假设铁磁性长方块是由多个磁畴组成,如图c所示,则由于磁荷不会形成于顶面与底面,只会形成于斜虚界面,所有的磁场都包含于长方块内部,磁能更微弱。这种组态称为“闭磁畴”(closure domain),是最小能量态。
匿名  发表于 2020-11-4 10:59
(续接上文):当铁磁质处于外磁场中时,那些自发磁化方向和外磁场方向成小角度的磁畴其体积随着外加磁场的增大而扩大并使磁畴的磁化方向进一步转向外磁场方向。另一些自发磁化方向和外磁场方向成大角度的磁畴其体积则逐渐缩小,这时铁磁质对外呈现宏观磁性。当外磁场增大时,上述效应相应增大,直到所有磁畴都沿外磁场排列达到饱和。由于在每个磁畴中个单元磁矩已排列整齐,因此具有很强的宏观磁性。
匿名  发表于 2020-11-4 10:59
磁畴性质
在居里温度以下,铁磁或亚铁磁材料内部存在很多具有各自的自发磁矩且磁矩成对的小区域。这些小区域排列的方向紊乱,宏观上这些小区域的集合体在外界表现出整体磁矩为零,不显磁性的现象。这些小区域即称为磁畴。磁畴之间的界面称为磁畴壁(magnetic domain wall)。当有外磁场作用时,磁畴内一些磁矩转向外磁场方向,使得与外磁场方向接近一致的总磁矩得到增加,这类磁畴得到成长,而其他磁畴变小,结果是磁化强度增高。随着外磁场强度的进一步增高,磁化强度增大,但即使磁畴内的磁矩取向一致,成了单一磁畴区,其磁化方向与外磁场方向也不完全一致。只有当外磁场强度增加到一定程度时,所有磁畴中磁矩的磁化方向才能全部与外磁场方向取向完全一致。此时,铁磁体就达到磁饱和状态,即成饱和磁化。一旦达到饱和磁化后,即使磁场减小到零,磁矩也不会回到零,残留下一些磁化效应。这种残留磁化值称为残余磁感应强度(以符号Br表示)。饱和磁化值称为饱和磁感应强度(Bs)。若加上反向磁场,使剩余磁感应强度回到零,则此时的磁场强度称为矫顽磁场强度或矫顽力(Hc)。
匿名  发表于 2020-11-4 11:00
从物质的原子结构观点来看,铁磁质内电子间因自旋引起的相互作用是非常强烈的,在这种作用下,铁磁质内部形成了一些微小的自发磁化区域,叫做磁畴。每一个磁畴中,各个电子的自旋磁矩排列的很整齐,因此它具有很强的磁性。磁畴的体积约为10-12m3~10-9m3,内含约1017~1020 个原子。在没有外磁场时,铁磁质内各个磁畴的排列方向是无序的,所以铁磁质对外不显磁性。当铁磁质处于外磁场中时,各个磁畴的磁矩在外磁场的作用下都趋向于沿外磁场中的磁化程度非常大,它所建立的附加磁场强度B'比外磁场的磁场强度B在数值上一般要大几十倍到数千倍,甚至达数万倍。
匿名  发表于 2020-11-4 11:00
磁畴结构及磁畴壁的移动
相邻磁畴的界限称为磁畴壁,磁畴壁是一个过渡区,具有一定的厚度。磁畴的磁化方向在畴壁处不能突然转一个很大的角度(主要有180°和90°两种),而是经过畴壁一定厚度逐步转过去的,即在这个过渡区中原子磁矩是逐步改变方向的。畴壁内部的能量总比畴内的能量高,壁的厚薄和面积大小都使它具有一定能量。
磁畴的形状尺寸.畴壁的类型与厚度总称为磁畴结构。同一磁性材料,如果磁畴结构不同,则其磁化行为也不同,所以磁畴结构不同是铁磁性物质磁性千差万别的原因之一。磁畴结构受到交换能、各向异性能、磁弹性能、磁畴壁能、退磁能的影响。平衡状态时的畴结构,这些能量之和应具有最小值。
匿名  发表于 2020-11-4 11:01
磁畴结构及磁畴壁的移动
相邻磁畴的界限称为磁畴壁,磁畴壁是一个过渡区,具有一定的厚度。磁畴的磁化方向在畴壁处不能突然转一个很大的角度(主要有180°和90°两种),而是经过畴壁一定厚度逐步转过去的,即在这个过渡区中原子磁矩是逐步改变方向的。畴壁内部的能量总比畴内的能量高,壁的厚薄和面积大小都使它具有一定能量。
磁畴的形状尺寸.畴壁的类型与厚度总称为磁畴结构。同一磁性材料,如果磁畴结构不同,则其磁化行为也不同,所以磁畴结构不同是铁磁性物质磁性千差万别的原因之一。磁畴结构受到交换能、各向异性能、磁弹性能、磁畴壁能、退磁能的影响。平衡状态时的畴结构,这些能量之和应具有最小值。
匿名  发表于 2020-11-4 11:01
(续上文):根据自发磁化理论,在冷却到居里点以下而不受外磁场作用的铁磁晶体中,由于交换作用使得整个晶体自发磁化达到饱和,显然,磁化方向应该沿着晶体的易轴,因为这样交换能和磁晶能才都处于最小值。但因为晶体有一定的大小与形状,整个晶体均匀磁化的结果必然产生磁极,磁极的退磁场却给系统增加了一部分退磁能。对于“单畴”从能量观点,把磁体分为n个区域时。退磁能降为原来的1/n,减少退磁能是分畴的基本动力。但由于两个相邻磁畴间存在畴壁,又需要增加一定的畴壁能,因此自发磁化区域的划分不能无限小,而是以畴壁能及退磁能相加等于极值为条件。为了降低能量.晶体边缘表面附近为封闭磁畴,它们使得退磁能降为零。一个系统从高磁能的饱和组态变为低磁能的分畴组态,从而导致系统能量降低的可能性是形成磁畴结构的原因。
匿名  发表于 2020-11-4 11:02
(续上文):对于多晶体来说晶界,第二相.晶体缺陷、夹杂,应力、成分的不均匀性等对畴结构有显著的影响。每一个晶粒会包含许多畴,在一个磁畴内,磁化强度一般都沿着晶体的易磁化方向。对于非织构的多晶体,各晶粒的取向是不同的,因此在不同晶粒内部磁畴的取向是不同的。为了减少退磁场能,在夹杂物附近会出现附加畴。在平衡状态时,畴壁一般都跨越夹杂物。
匿名  发表于 2020-11-4 11:02
温度影响
从实验中我们得知,铁磁质的磁化和温度有关。随着温度的升高,它的磁化能力逐渐减小,当温度升高到某一温度时,铁磁性就完全消失,铁磁质退化成顺磁质。这个温度叫做居里温度或叫居里点。这是因为铁磁质中自发磁化区域因剧烈的分子热运动而遭到破坏,磁畴也就瓦解了,铁磁质的铁磁性消失,过渡到顺磁质,从实验知道,铁的居里温度是1043K,78%坡莫合金的居里温度是873K,45%坡莫合金的居里温度是673K。
匿名  发表于 2020-11-4 11:03
磁畴,是指磁性材料内部的一个个小区域,每个区域内部包含大量原子,这些原子的磁矩都象一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同,如图所示。各个磁畴之间的交界面称为磁畴壁。宏观物体一般总是具有很多磁畴,这样,磁畴的磁矩方向各不相同,结果相互抵消,矢量和为零,整个物体的磁矩为零,它也就不能吸引其它磁性材料。也就是说磁性材料在正常情况下并不对外显示磁性。只有当磁性材料被磁化以后,它才能对外显示出磁性。在中学物理教科书中,目前课程改革试验区(山东、江苏、海南、宁夏、广东等)使用的人教版《普通高中课程标准实验教科书.物理》采用了磁畴理论,而现在大部分地区使用的人教版教材《全日制普通高级中学教科书.物理》中在解释磁化原理是用的是安培的分子电流假说。
匿名  发表于 2020-11-4 11:03
磁畴,是指磁性材料内部的一个个小区域,每个区域内部包含大量原子,这些原子的磁矩都象一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同,如图所示。各个磁畴之间的交界面称为磁畴壁。宏观物体一般总是具有很多磁畴,这样,磁畴的磁矩方向各不相同,结果相互抵消,矢量和为零,整个物体的磁矩为零,它也就不能吸引其它磁性材料。也就是说磁性材料在正常情况下并不对外显示磁性。只有当磁性材料被磁化以后,它才能对外显示出磁性。在中学物理教科书中,目前课程改革试验区(山东、江苏、海南、宁夏、广东等)使用的人教版《普通高中课程标准实验教科书.物理》采用了磁畴理论,而现在大部分地区使用的人教版教材《全日制普通高级中学教科书.物理》中在解释磁化原理是用的是安培的分子电流假说。
匿名  发表于 2020-11-4 11:03
作者(逺长江)有一个比如:磁畴如同下雨天的地面散流,流向杂乱无章;而磁化后则磁矩均匀同向排列,归向同一,如同河流流向集中统一,故显示出磁性。
匿名  发表于 2020-11-4 11:03
作者(逺长江)有一个比如:磁畴如同下雨天的地面散流,流向杂乱无章;而磁化后则磁矩均匀同向排列,归向同一,如同河流流向集中统一,故显示出磁性。
匿名  发表于 2020-11-4 11:04
珀莱雅水动力护肤品套装女补水保湿水乳液透皙美白淡斑化妆品
磁铁矿是如何形成的?
磁铁矿的化学成分为Fe3O4,晶体属等轴晶系的氧化物矿物。因为它具有磁性,中国古代又称为慈石、磁石、玄石。完好单晶形呈八面体或菱形十二面体,呈菱形十二面体时,菱形面上常有平行该晶面长对角线方向的条纹。
  集合体为致密块状或粒状。颜色为铁黑色,条痕呈黑色,半金属光泽,不透明,无解理,摩氏硬度5。  5-6,比重4。8-5。3。具强磁性,是矿物中磁性最强的,能被永久磁铁吸引,中国古代的指南针"司南"就是利用这一特性制成的。
匿名  发表于 2020-11-4 11:05
磁铁矿是怎么形成的?磁铁矿的主要成分是什么?磁铁矿是什么?
磁铁矿的化学成分为Fe3O4,晶体属等轴晶系的氧化物矿物。因为它具有磁性,中国古代又称为慈石、磁石、玄石。完好单晶形呈八面体或菱形十二面体,呈菱形十二面体时,菱形面上常有平行该晶面长对角线方向的条纹。
  集合体为致密块状或粒状。颜色为铁黑色,条痕呈黑色,半金属光泽,不透明,无解理,摩氏硬度5。  5-6,比重4。8-5。3。具强磁性,是矿物中磁性最强的,能被永久磁铁吸引,中国古代的指南针"司南"就是利用这一特性制成的。
匿名  发表于 2020-11-4 11:06
磁铁矿分布广,有多种成因。岩浆成因矿床以瑞典基鲁纳为典型;火山作用有关的矿浆直接形成的以智利拉克铁矿为典型;接触变质形成的铁矿以中国大冶铁矿为典型;含铁沉积岩层经区域变质作用形成的铁矿,品位低规模大,俄罗斯、北美、巴西、澳大利亚和中国辽宁鞍山等地都有大量产出。
    磁铁矿是炼铁的主要矿物原料,也是传统的中药材。
匿名  发表于 2020-11-4 11:06
磁铁矿是什么

磁铁矿,是指氧化物类矿物磁铁矿的矿石。属等轴晶系。晶体呈八面体、十二面体。晶面有条纹。多为粒块状集合体。铁黑色,或具暗蓝靛色。条痕黑,半金属光泽。不透明。无解理。断口不平坦。硬度5.5~6.5。密度5.16~5.18g/cm3。具强磁性。性脆。无臭,无味。常产于岩浆岩、变质岩中。

海滨沙中也常存在。分布山东、河北、河南、辽宁、黑龙江、内蒙古、湖北、云南、广东、四川、山西、江苏、安徽。
匿名  发表于 2020-11-4 11:07
磁铁矿是怎么形成的

自然界有天然产出的磁性物体(磁石),从矿物学角度看,它是极磁铁矿。

(lodestone),是磁铁矿(magnetite)的一个亚种.它们的化学成分都是氧化铁(FeO.Fe2O3,可看成是四氧化三铁,Fe3O4).

一般磁铁矿,可被磁铁吸引,而它本身不能吸引铁器.极磁铁矿则本身能吸铁针,这种现象,在宋代苏颂<<图经本草>>中就有记载:"磁石生泰山山峪及慈山,山阴有铁处则生其阳.今磁州,徐州及南海傍山中皆有之.慈州(磁州)者岁贡尤佳,能吸铁虚连十数针,或一二斤刀器回转不落者,尤真"。
您需要登录后才可以回帖 登录 | 加入地震坛

本版积分规则

Archiver|小黑屋|地震坛 ( 京ICP备14033744号 )

GMT+8, 2024-3-29 03:55

Powered by Discuz! X3.5

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表