找回密码
 加入地震坛
搜索
热搜: 活动 交友 discuz
楼主: 匿名

震源深浅与地震波辐射震动面(即震域)大小的依存关係:

[复制链接]
匿名  发表于 2021-11-8 10:10
地球也是一个大磁体,它的两个极分别在接近地理南极和地理北极的地方。因此地球表面的磁体,可以自由转动时,就会因磁体同性相斥,异性相吸的性质指示南北。这个道理古人不够明白,但这类现象他们很清楚。
第一个描述了磁偏角的是沈括。他在《梦溪笔谈》里描述了他对磁的探究,描述了磁偏角。中国古代的先民们利用磁,先后制成了司南、指南鱼、指南针。指南针被应用于航海的典型是郑和下西洋。指南针通过阿拉伯人传入欧洲后促进了欧洲航海技术的发展,为新航路的开辟提供了有利的帮助。
匿名  发表于 2021-11-8 10:10
地球也是一个大磁体,它的两个极分别在接近地理南极和地理北极的地方。因此地球表面的磁体,可以自由转动时,就会因磁体同性相斥,异性相吸的性质指示南北。这个道理古人不够明白,但这类现象他们很清楚。
第一个描述了磁偏角的是沈括。他在《梦溪笔谈》里描述了他对磁的探究,描述了磁偏角。中国古代的先民们利用磁,先后制成了司南、指南鱼、指南针。指南针被应用于航海的典型是郑和下西洋。指南针通过阿拉伯人传入欧洲后促进了欧洲航海技术的发展,为新航路的开辟提供了有利的帮助。
匿名  发表于 2021-11-8 10:11
地球也是一个大磁体,它的两个极分别在接近地理南极和地理北极的地方。因此地球表面的磁体,可以自由转动时,就会因磁体同性相斥,异性相吸的性质指示南北。这个道理古人不够明白,但这类现象他们很清楚。
第一个描述了磁偏角的是沈括。他在《梦溪笔谈》里描述了他对磁的探究,描述了磁偏角。中国古代的先民们利用磁,先后制成了司南、指南鱼、指南针。指南针被应用于航海的典型是郑和下西洋。指南针通过阿拉伯人传入欧洲后促进了欧洲航海技术的发展,为新航路的开辟提供了有利的帮助。
匿名  发表于 2021-11-8 10:12
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:12
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:12
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:12
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:12
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:13
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:13
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:13
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:13
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:13
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:13
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:13
西方理论发展
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
匿名  发表于 2021-11-8 10:14
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:14
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:14
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:14
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:14
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:14
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:15
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:15
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:15
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:16
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:16
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:16
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:16
人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
匿名  发表于 2021-11-8 10:17
磁体上磁性最强的部位叫做磁极;磁铁两端磁性强的区域称为磁极,一端为南极,一端为北极。异名磁极相互吸引,同名磁极相互排斥。磁场可以说是由电子的自旋产生的,变化的电场产生磁场。
匿名  发表于 2021-11-8 10:17
磁体上磁性最强的部位叫做磁极;磁铁两端磁性强的区域称为磁极,一端为南极,一端为北极。异名磁极相互吸引,同名磁极相互排斥。磁场可以说是由电子的自旋产生的,变化的电场产生磁场。
匿名  发表于 2021-11-8 10:17
磁体上磁性最强的部位叫做磁极;磁铁两端磁性强的区域称为磁极,一端为南极,一端为北极。异名磁极相互吸引,同名磁极相互排斥。磁场可以说是由电子的自旋产生的,变化的电场产生磁场。
匿名  发表于 2021-11-8 10:17
磁体上磁性最强的部位叫做磁极;磁铁两端磁性强的区域称为磁极,一端为南极,一端为北极。异名磁极相互吸引,同名磁极相互排斥。磁场可以说是由电子的自旋产生的,变化的电场产生磁场。
匿名  发表于 2021-11-8 10:17
磁体上磁性最强的部位叫做磁极;磁铁两端磁性强的区域称为磁极,一端为南极,一端为北极。异名磁极相互吸引,同名磁极相互排斥。磁场可以说是由电子的自旋产生的,变化的电场产生磁场。
匿名  发表于 2021-11-8 10:18
磁体上磁性最强的部位叫做磁极;磁铁两端磁性强的区域称为磁极,一端为南极,一端为北极。异名磁极相互吸引,同名磁极相互排斥。磁场可以说是由电子的自旋产生的,变化的电场产生磁场。
匿名  发表于 2021-11-8 10:18
场的概念
场指物体在空间中的分布情况。场是用空间位置函数来表征的。在物理学中,经常要研究某种物理量在空间的分布和变化规律。如果物理量是标量,那么空间每一点都对应着该物理量的一个确定数值,则称此空间为标量场。例如:电势场、温度场等。如果物理量是矢量,那么空间每一点都存在着它的大小和方向,则称此空间为矢量场。例如:电场、速度场等。
匿名  发表于 2021-11-8 10:18
场的概念
场指物体在空间中的分布情况。场是用空间位置函数来表征的。在物理学中,经常要研究某种物理量在空间的分布和变化规律。如果物理量是标量,那么空间每一点都对应着该物理量的一个确定数值,则称此空间为标量场。例如:电势场、温度场等。如果物理量是矢量,那么空间每一点都存在着它的大小和方向,则称此空间为矢量场。例如:电场、速度场等。
匿名  发表于 2021-11-8 10:19
场的概念
场指物体在空间中的分布情况。场是用空间位置函数来表征的。在物理学中,经常要研究某种物理量在空间的分布和变化规律。如果物理量是标量,那么空间每一点都对应着该物理量的一个确定数值,则称此空间为标量场。例如:电势场、温度场等。如果物理量是矢量,那么空间每一点都存在着它的大小和方向,则称此空间为矢量场。例如:电场、速度场等。
匿名  发表于 2021-11-8 10:19
场的概念
场指物体在空间中的分布情况。场是用空间位置函数来表征的。在物理学中,经常要研究某种物理量在空间的分布和变化规律。如果物理量是标量,那么空间每一点都对应着该物理量的一个确定数值,则称此空间为标量场。例如:电势场、温度场等。如果物理量是矢量,那么空间每一点都存在着它的大小和方向,则称此空间为矢量场。例如:电场、速度场等。
匿名  发表于 2021-11-8 10:19
场的概念
场指物体在空间中的分布情况。场是用空间位置函数来表征的。在物理学中,经常要研究某种物理量在空间的分布和变化规律。如果物理量是标量,那么空间每一点都对应着该物理量的一个确定数值,则称此空间为标量场。例如:电势场、温度场等。如果物理量是矢量,那么空间每一点都存在着它的大小和方向,则称此空间为矢量场。例如:电场、速度场等。
匿名  发表于 2021-11-8 10:19
场的概念
场指物体在空间中的分布情况。场是用空间位置函数来表征的。在物理学中,经常要研究某种物理量在空间的分布和变化规律。如果物理量是标量,那么空间每一点都对应着该物理量的一个确定数值,则称此空间为标量场。例如:电势场、温度场等。如果物理量是矢量,那么空间每一点都存在着它的大小和方向,则称此空间为矢量场。例如:电场、速度场等。
匿名  发表于 2021-11-8 10:19
场的概念
场指物体在空间中的分布情况。场是用空间位置函数来表征的。在物理学中,经常要研究某种物理量在空间的分布和变化规律。如果物理量是标量,那么空间每一点都对应着该物理量的一个确定数值,则称此空间为标量场。例如:电势场、温度场等。如果物理量是矢量,那么空间每一点都存在着它的大小和方向,则称此空间为矢量场。例如:电场、速度场等。
匿名  发表于 2021-11-8 10:19
场的概念
场指物体在空间中的分布情况。场是用空间位置函数来表征的。在物理学中,经常要研究某种物理量在空间的分布和变化规律。如果物理量是标量,那么空间每一点都对应着该物理量的一个确定数值,则称此空间为标量场。例如:电势场、温度场等。如果物理量是矢量,那么空间每一点都存在着它的大小和方向,则称此空间为矢量场。例如:电场、速度场等。
匿名  发表于 2021-11-8 10:20
场是一种特殊物质,看不见、摸不着,但它确实存在。比如:引力场、磁场等。爱因斯坦在狭义相对论中否定以太的存在,但广义相对论的建立体现了爱因斯坦思想的明显改变。他指出:广义相对论“是一种场论”,“如果用常数代替那些描述广义相对论以太的函数,同时不考虑任何决定以太的原因,那么广义相对论以太就可以在想象中变为洛仑兹以太。”爱因斯坦甚至试图把各种场统一起来,形成一种完美无瑕的理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。
匿名  发表于 2021-11-8 10:20
场是一种特殊物质,看不见、摸不着,但它确实存在。比如:引力场、磁场等。爱因斯坦在狭义相对论中否定以太的存在,但广义相对论的建立体现了爱因斯坦思想的明显改变。他指出:广义相对论“是一种场论”,“如果用常数代替那些描述广义相对论以太的函数,同时不考虑任何决定以太的原因,那么广义相对论以太就可以在想象中变为洛仑兹以太。”爱因斯坦甚至试图把各种场统一起来,形成一种完美无瑕的理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。
匿名  发表于 2021-11-8 10:21
场是一种特殊物质,看不见、摸不着,但它确实存在。比如:引力场、磁场等。爱因斯坦在狭义相对论中否定以太的存在,但广义相对论的建立体现了爱因斯坦思想的明显改变。他指出:广义相对论“是一种场论”,“如果用常数代替那些描述广义相对论以太的函数,同时不考虑任何决定以太的原因,那么广义相对论以太就可以在想象中变为洛仑兹以太。”爱因斯坦甚至试图把各种场统一起来,形成一种完美无瑕的理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。
匿名  发表于 2021-11-8 10:21
场是一种特殊物质,看不见、摸不着,但它确实存在。比如:引力场、磁场等。爱因斯坦在狭义相对论中否定以太的存在,但广义相对论的建立体现了爱因斯坦思想的明显改变。他指出:广义相对论“是一种场论”,“如果用常数代替那些描述广义相对论以太的函数,同时不考虑任何决定以太的原因,那么广义相对论以太就可以在想象中变为洛仑兹以太。”爱因斯坦甚至试图把各种场统一起来,形成一种完美无瑕的理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。
匿名  发表于 2021-11-8 10:22
场是一种特殊物质,看不见、摸不着,但它确实存在。比如:引力场、磁场等。爱因斯坦在狭义相对论中否定以太的存在,但广义相对论的建立体现了爱因斯坦思想的明显改变。他指出:广义相对论“是一种场论”,“如果用常数代替那些描述广义相对论以太的函数,同时不考虑任何决定以太的原因,那么广义相对论以太就可以在想象中变为洛仑兹以太。”爱因斯坦甚至试图把各种场统一起来,形成一种完美无瑕的理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。
匿名  发表于 2021-11-8 10:22
场是一种特殊物质,看不见、摸不着,但它确实存在。比如:引力场、磁场等。爱因斯坦在狭义相对论中否定以太的存在,但广义相对论的建立体现了爱因斯坦思想的明显改变。他指出:广义相对论“是一种场论”,“如果用常数代替那些描述广义相对论以太的函数,同时不考虑任何决定以太的原因,那么广义相对论以太就可以在想象中变为洛仑兹以太。”爱因斯坦甚至试图把各种场统一起来,形成一种完美无瑕的理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。
匿名  发表于 2021-11-8 10:23
场是一种特殊物质,看不见、摸不着,但它确实存在。比如:引力场、磁场等。爱因斯坦在狭义相对论中否定以太的存在,但广义相对论的建立体现了爱因斯坦思想的明显改变。他指出:广义相对论“是一种场论”,“如果用常数代替那些描述广义相对论以太的函数,同时不考虑任何决定以太的原因,那么广义相对论以太就可以在想象中变为洛仑兹以太。”爱因斯坦甚至试图把各种场统一起来,形成一种完美无瑕的理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。
匿名  发表于 2021-11-8 10:24
场是一种特殊物质,看不见、摸不着,但它确实存在。比如:引力场、磁场等。爱因斯坦在狭义相对论中否定以太的存在,但广义相对论的建立体现了爱因斯坦思想的明显改变。他指出:广义相对论“是一种场论”,“如果用常数代替那些描述广义相对论以太的函数,同时不考虑任何决定以太的原因,那么广义相对论以太就可以在想象中变为洛仑兹以太。”爱因斯坦甚至试图把各种场统一起来,形成一种完美无瑕的理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。
匿名  发表于 2021-11-8 10:24
在物理学中,场是一个以时空为变量的物理量。场可以分为标量场、矢量场和张量场三种,依据场在时空中每一点的值是标量、矢量还是张量而定。例如,经典重力场是一个矢量场:标示重力场在时空中每一个的值需要三个量,此即为重力场在每一点的重力场矢量分量。更进一步地,在每一范畴(标量、矢量、张量)之中,场还可以分为“经典场”和“量子场”两种,依据场的值是数字或量子算符而定。
场被认为是延伸至整个空间的,但实际上,每一个已知的场在够远的距离下,都会缩减至无法量测的程度。例如,在牛顿万有引力定律里,重力场的强度是和距离平方成反比的,因此地球的重力场会随着距离很快地变得不可测得(在宇宙的尺度之下)。
匿名  发表于 2021-11-8 10:25
在物理学中,场是一个以时空为变量的物理量。场可以分为标量场、矢量场和张量场三种,依据场在时空中每一点的值是标量、矢量还是张量而定。例如,经典重力场是一个矢量场:标示重力场在时空中每一个的值需要三个量,此即为重力场在每一点的重力场矢量分量。更进一步地,在每一范畴(标量、矢量、张量)之中,场还可以分为“经典场”和“量子场”两种,依据场的值是数字或量子算符而定。
场被认为是延伸至整个空间的,但实际上,每一个已知的场在够远的距离下,都会缩减至无法量测的程度。例如,在牛顿万有引力定律里,重力场的强度是和距离平方成反比的,因此地球的重力场会随着距离很快地变得不可测得(在宇宙的尺度之下)。
您需要登录后才可以回帖 登录 | 加入地震坛

本版积分规则

Archiver|小黑屋|地震坛 ( 京ICP备14033744号 )

GMT+8, 2024-4-27 04:30

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表